Spin state classification
Operator-state duality

The trace expression for the expectation value of the observables

<A> =Tr(Ap) (1)
gives the density operator formalism a convenient property — the density matrix with specific expectation
values of orthogonal operators is a linear combination of the corresponding operators.
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For example, if a spin-% particle is completely polarized along the Z axis, that is,

then the corresponding density matrix is:

=lu)vl-laal={ Jo 0)=( o)-3+L. @

where the unit matrix is inconsequential because it commutes with everything and does not influence the
observable quantities. We can therefore simply say that p =L, . It can be similarly shown that p for the
spin oriented along X and Y axes is equal to L, and L, operators respectively. This leads to the com-
mon practice of associating spin operators with the state of the spin system. When we say that the spin

system is “in the L, state”, this means that its density operator is equal to L, .

Treatment of composite systems
It is a standard result in quantum mechanics that, for a system composed of two non-interacting uncor-
related subsystems, the total wavefunction is a product of the wavefunctions of the subsystems. In matrix-

vector representations, the corresponding operation is called direct product:

|Van) =|Va) ®|ws) (3)
It is defined in the following way:
aB - a,B
A®B=| : . (4)
a,B - a,B
The following properties are relevant:
(A®B)(C®D)=(AC)®(BD) Tr(A®B)=Tr(A)Tr(B) (5)

For the density matrix of the composite system we therefore have:

Pas =|‘//AB><‘//AB|=(|V’A>®|‘//B>)(<WA|®<V/B|)=
:(|'//A><‘//A |)®(|WB><WB |) =PA® Py

The Hamiltonian is built differently — the two parts must only affect their own subsystems, and must leave

(6)

the other subsystem intact. The Hamiltonian of a non-interacting two-spin system is therefore:
H,,=H,®1,+1,®H, (7)

where 1 denotes a unit matrix of the dimension matching the density matrix dimension of the subsystem

indicated in the subscript. This procedure may be extended to multiple spins.



Relaxation of product states
In the case when the two spins do not interact, and the noise in the Hamiltonian that relaxes them is
uncorrelated, the relaxation rate of the product state is the sum of the relaxation rates of the individual

states, for example:

(8)
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where N isthe normalisation factor. In practice the noises are often correlated and the spins do interact,

but the sum of the rates is a reasonable upper bound on the relaxation rate of the product state.

Spin state classification

Following the derivations given in the previous lecture, we will classify the basis of the density matrix
space according to the physical meaning of the corresponding observable operators. Note that for histor-
ical reasons [Zéz fz means |:Z ® éz ® fz crossed with the identity operators on any other spins that are

not explicitly mentioned. The common classification identifies:

1. Identity (unit) operator: usually denoted E . When a unit operator is supplied for a particular spin in

the direct product of operators, the result corresponds to an average, with equal weights, over all
possible states of that spin. Unit operators are typically included implicitly — e.g. in a two spin system,
the L, ® E operator corresponding to the average Z-magnetization of the first spin would be abbre-

viated to just L, .
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2. Longitudinal single-spin orders: L, Sz , etc. These correspond to population differences between en-

ergy levels that are one spin flip away from each other, they are also known as longitudinal magneti-

zation.

3. Longitudinal multi-spin orders: L,S,, L,S,1,, etc. These also correspond to population differences

across levels connected by single-spin flips, but the sign of the population difference depends on the
state that other spins have in a particular pair of energy levels. The other name for these states is

longitudinal correlations.

4. Transverse single-spin orders: LX , SY , L, , etc. These correspond to observable transverse magneti-

zation in the system and originate from the presence of linear combinations of Hamiltonian eigenfunc-

tions in the wavefunction.



5. Transverse multi-spin orders: L, S, , L.S _, etc. Although they nominally involve transverse spin op-

erators, these states do not yield observable transverse magnetization. For spin ensembles they cor-
respond to correlations between the linear combination coefficients in wavefunctions across the en-

semble.

6. Mixed spin orders: L,S_, etc. These do not have a systematic classification and correspond to compli-

cated correlations between longitudinal magnetization and time dynamics. Some mixed spin orders
are interpretable ( LZSJr is the transverse precession of the S spin with the precession phase depend-

ent on the state of spin L), but this is rarely the case in general.
Several specific spin states and classes of spin states have historical names:

1. Coherences: a spin state p having the following property under the commutation action by the total

spin projection operator:
[ﬁzeﬁ]:kﬁ I:ZZZIZ(Zn) (9)

is often referred to as K -quantum coherence. If a state is written as a Kronecker product of raising and
lowering operators, e.g. |:+§_ fz , then the coherence order K is equal to the number of “+” operators
minus the number of “—“ operators in the direct product (Z operators do not contribute). Of particular
note are single-quantum coherences ( |:+ and |:7) because they correspond to the observable trans-
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verse magnetization. Non-Hermitian L, operators make an appearance because they correspond to

guadrature-detected magnetization:
<I:X>ii<I:Y>:<I:XiiI:Y>:<I:i> (10)
2. Correlations: a spin state having K non-unit operators in its direct product representation is called a

K -spin correlation because it describes the collective behaviour of those spins. High-order correlations

often relax faster than low-order correlations.

3. Singlet and triplet: the following spin states are eigenfunctions of the symmetry operator that per-

mutes the labels on the two particles:
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Because many spin interactions are symmetric with respect to the permutation of particle labels, these
functions also span subspaces that are invariant under their Hamiltonians. In particular, the invariance

of the singlet state under the dipolar Hamiltonian can in some cases make it very long-lived.

Practical analysis of pulse sequences is often performed in terms of coherence orders and correlation
orders that the system is steered through by the sequence. Different coherence orders in particular re-

spond differently to pulses and pulsed field gradients.



